Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The development of a system to electrochemically control ruthenium-catalyzed olefin metathesis is reported. Catalyzed by a commercially-available bis-NHC Ru complex, this system displays a broad substrate scope with very short reaction times, as well as excellent levels of temporal control over metathesis with only electricity as a stimulus.more » « less
-
null (Ed.)Background/Goal/Aim The tetracenomycins are aromatic anticancer polyketides that inhibit peptide translation via binding to the large ribosomal subunit. Here, we expressed the elloramycin biosynthetic gene cluster in the heterologous host Streptomyces coelicolor M1146 to facilitate the downstream production of tetracenomycin analogs. Main Methods and Major Results We developed a BioBricks® genetic toolbox of genetic parts for substrate precursor engineering in S. coelicolor M1146::cos16F4iE. We cloned a series of integrating vectors based on the VWB, TG1, and SV1 integrase systems to interrogate gene expression in the chromosome. We genetically engineered three separate genetic constructs to modulate tetracenomycin biosynthesis: 1) the vhb hemoglobin from obligate aerobe Vitreoscilla stercoraria to improve oxygen utilization; (2) the accA2BE acetyl-CoA carboxylase to enhance condensation of malonyl-CoA; (3) lastly, the sco6196 acyltransferase, which is a “metabolic regulatory switch” responsible for mobilizing triacylglycerols to β-oxidation machinery for acetyl-CoA. In addition, we engineered the tcmO 8-O-methyltransferase and newly identified tcmD 12-O-methyltransferase from Amycolatopsis sp. A23 to generate tetracenomycins C and X. We also co-expressed the tcmO methyltransferase with oxygenase urdE to generate the analog 6-hydroxy-tetracenomycin C. Conclusions and Implications Altogether, this system is compatible with the BioBricks® [RFC 10] cloning standard for the co-expression of multiple gene sets for metabolic engineering of Streptomyces coelicolor M1146::cos16F4iE. This production platform improves access to potent analogs, such as tetracenomycin X, and sets the stage for the production of new tetracenomycins via combinatorial biosynthesis. This article is protected by copyright. All rights reservedmore » « less
-
Free, publicly-accessible full text available December 1, 2025
An official website of the United States government
